Exercise-induced muscle injury augments forearm vascular resistance during leg exercise.
نویسندگان
چکیده
The purpose of the present investigation was to examine the effect of exercise-induced muscle injury on hemodynamic responses during exercise. Ten subjects performed unilateral isometric knee extensions (IKE) at 30% of preinjury maximum voluntary contraction to fatigue and for 3 min before and 48 h after muscle injury. Muscle injury was elicited by performing 8 sets of 10 repetitions of eccentric muscle actions of the knee extensor muscles (i.e., quadriceps muscles) by lowering a weight equivalent to 75% of eccentric maximum load. Exercise time to fatigue for IKE at 30% of maximum voluntary contraction in the injured leg was significantly decreased from preinjury to postinjury IKE (257 ± 21 to 203 ± 23 s; n = 10), but was unchanged in the control leg (244 ± 16 to 254 ± 20 s; n = 7). With the use of a 10-cm visual analog scale, ratings of muscle soreness in the injured leg increased from 0 to 5.1 ± 0.7 cm ( P < 0.001) but were not changed in the control leg (0 both times). Both heart rate and mean arterial pressure responses to exercise were unchanged following muscle injury. Forearm blood flow and forearm vascular resistance were not different at rest and during the first minute of exercise before and after muscle injury. However, after muscle injury, forearm blood flow was significantly lower and forearm vascular resistance was significantly higher ( P < 0.03) during the second and third minutes of exercise. There were no significant changes in any variables with the contralateral control leg. In four subjects, resting magnetic resonance images demonstrated a 23% greater relative cross-sectional area of the knee extensor muscles with an elevated transverse relaxation time in the injured versus control leg. The results indicate that forearm vascular resistance is augmented during isometric knee extension following muscle injury of the knee extensor muscles. The data suggest that muscle injury alters vascular control to non-exercising skeletal muscle during exercise.
منابع مشابه
non-exercising muscles
Eighteen patients with coronary artery disease were divided into two groups according to whether their blood pressure decreased (eight, group 1) or increased (10, group 2) in response to treadmill exercise testing. Age and the extent and distribution of coronary artery disease were similar in the two groups. At rest, blood pressure, pulmonary artery wedge pressure, cardiac index, forearm vascul...
متن کاملSkeletal muscle metaboreceptor stimulation opposes peak metabolic vasodilation in humans.
The total blood flow requirements of a large muscle mass can exceed the maximal cardiac output generated by the heart during exercise. Therefore, to maintain blood pressure, muscle vasodilation must be opposed by sympathetic vasoconstriction. The primary neural signal that increases sympathetic outflow is unclear. In an effort to isolate the vasoconstricting mechanism that opposes vasodilation,...
متن کاملAftereffects of exercise on regional and systemic hemodynamics in hypertension.
Several studies have indicated that a single bout of physical exercise induced a significant antihypertensive effect during the hours after the activity. However, little information is presently available on the underlying hemodynamic changes. We examined 13 essential hypertensive patients and nine normotensive subjects in a randomized, crossover study design during 3 hours after a 30-minute pe...
متن کاملMuscle blood flow responses to dynamic exercise in young obese humans.
Exercise is a common nonpharmacological way to combat obesity; however, no studies have systematically tested whether obese humans exhibit reduced skeletal muscle blood flow during dynamic exercise. We hypothesized that exercise-induced blood flow to skeletal muscle would be lower in young healthy obese subjects (body mass index of >30 kg/m(2)) compared with lean subjects (body mass index of <2...
متن کاملPartition of blood flow to the cutaneous and muscular beds of the forearm at rest and during leg exercise in normal subjects and in patients with heart failure.
The purpose of this study was to determine the relative effects of various levels of exercise on blood flow to skin and muscle of the resting extremity of normal subjects and the manner in which this distribution is modified by congestive heart failure. Blood flow to the skin and muscle of the forearm was determined plethysmographically with the aid of epinephrine iontophoresis at rest and duri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 275 2 شماره
صفحات -
تاریخ انتشار 1998